职场文秘网

首页 > 心得体会 > 学习材料 / 正文

光纤时间传递监控系统设计与实现

2023-01-13 17:10:07

邵智辰,谢昆峰,左发兴,胡 亮,陈建平,吴龟灵

(上海交通大学 区域光纤通信网与新型光通信系统国家重点实验室,上海 200240)

高精度的光纤时间同步在通信、航天航空和导航定位等领域有着重要的应用前景[1-3]。随着光纤时间传递系统的不断发展,设备规模变得越来越大,种类和数量变得越来越多,对系统的灵活性、完备性、安全性和高可用性的需求更是在不断增长,缺少一个完整监控系统的局限性慢慢体现了出来[4-5]。首先,随着系统节点的增加,当某个节点出现故障或信号发生异常时不能及时定位故障的源头,导致处理故障的时间往往都消耗在寻找故障的位置。其次,随着业务的扩展,系统节点的位置分布在全国各地,为了获取大规模系统中各节点的信息和数据,现有的时间传递系统需要有技术人员在机房实时值守,耗费大量的人力和时间。最后,仪器本身只能存储少部分的数据,无法实现历史数据和历史状态的回放。

针对以上问题,本文设计了高精度时间传递系统监控系统的总体架构,包括故障管理、性能管理、配置管理、安全管理和数据管理5个部分,定义了各部分的功能,并设计了相应的数据库结构。在基于双向时分复用同纤同波(BTDMSFSW)光纤时间传递系统[6-8]上实现和测试了监控系统。结果表明,该系统能够实时地监控传递节点状态、传递系统的性能,并处理监测到的故障,提高系统运行的可靠性。

监控系统的结构主要有3种,分别是集中式系统、分布式系统和层次型系统[9]。考虑到便于集中管理的优势,设计的时间传递监控系统采取集中式的结构,如图1所示。监控节点通过网络与时间传递系统中的近端、远端和中继节点相连;
时间传递节点将本站点的钟差数据、状态信息等通过网络发送至监控系统的管理信息库;
监控系统通过数据库实现配置管理、故障管理、性能管理、数据管理和安全管理。

图2是设计的光纤时间传递监控系统的总体架构。各部分功能如下。

1)故障管理。用于发现、定位系统出现故障的位置和原因,并采取一定的恢复方式,保证时间传递系统的正常运行,分为3个部分,即故障检测与诊断、故障恢复和故障记录。故障检测与诊断用来检测、识别和定位故障,并产生告警信息。光纤时间传递系统主要的故障信息包括输入时间信号(PPS)异常、参考频率信号异常、光纤链路状态异常、设备异常等。故障恢复在检测到故障时采取切换主备光纤、设备、数据传输方式等保证系统的运行。故障记录将故障信息存储在数据库中。

图1 光纤时间传递监控系统结构图Fig.1 Structure of optical fiber time transmission monitoring system

2)性能管理。用来采集和分析系统数据,监测和评估系统性能,确认系统性能在可接受的水平内,包括数据采集、性能计算、评估分析。数据采集获取每个传递节点测量的时间间隔。性能计算利用数据采集获取到的时间间隔计算时间传递的稳定度,绘制相应的曲线。评估分析根据各传递节点的性能对系统做综合评估和分析,根据设定的阈值产生告警信息。

3)配置管理。用来对系统运行参数、链路连接、数据传输方式等进行远程配置。时间传递系统的配置信息包括系统运行参数、系统告警参数和数据接口参数。系统运行参数包括链路连接状态、系统校准参数和设备参数等;
系统告警参数包括故障、性能和安全等告警的类型、方式和阈值等;
数据接口参数包括数据通信接口地址、码率等。设计的配置管理模块包括配置信息的初始化、配置更新和配置备份。配置信息的初始化在系统更新或重启后从数据库读取存储的系统配置,快速恢复系统状态。配置更新读取系统管理员设定的配置信息,并通过网络下发给系统相应的设备。配置备份将每一次配置的更改记录在数据库中。

图2 光纤时间传递监控系统总体架构Fig.2 Overall architecture of optical fiber time transmission monitoring system

4)安全管理。用来保证只有具有一定权限的用户才能进入系统查看和修改系统信息,防止系统被破坏或是数据被窃取,包括用户分类、身份验证,以及数据存储的安全和保密。用户分类将能够进入系统的用户分为不同等级的用户。身份验证根据用户名和密码检查登录用户的合法性和权限,并记录每一次的登录信息,对超过指定次数的非法登录做出告警。数据存储的安全和保密用来保证系统的数据被安全的存储在数据库中不被泄漏。

5)数据管理。负责存储和维护系统的性能、配置、用户、告警记录等数据,并提供数据的历史回放与分析。管理员可以通过数据管理子系统调用和查看历史的数据信息、历史的状态信息和历史告警信息。

管理信息库的结构如图3所示,包含故障表、性能表、配置表和安全表。故障表和性能表对每个节点都有一个子表。配置表又分为当前配置表和修改配置表,当前配置表用来存储当前的配置,修改配置表用来存储待修改的配置。配置表中包含了针对不同配置项(如光纤、数据传输方式等)的子表。安全表用来存储用户信息和登录记录。

本系统实现了对输入秒脉冲信号(1PPS)异常、输入10 MHz频率信号异常、光纤链路异常的监控。其中,输入PPS信号和10 MHz频率信号通过光纤时间传递端机的可编程逻辑门阵列(FPGA)板卡实现监控,光纤链路通过光收发器对输入光监控。PPS是频率为1 Hz、脉宽在20 ms和200 ms之间的脉冲信号,10 MHz频率输入FPGA后可以认为是频率为10 MHz、占空比为50%的方波信号。通过FPGA本地100 MHz晶振实现对PPS和10 MHz的监控,故障监控状态机如图4所示。图4(a)中IDLE状态产生告警;
State1状态代表检测到PPS的上升沿;
State2状态代表此时脉宽大于20 ms,符合要求;
State3状态代表PPS脉宽小于200 ms,是正常的输入PPS信号。图4(b)中IDLE状态产生告警;
State1状态代表检测到10 MHz参考频率上升沿;
State2状态代表检测到10 MHz参考频率下降沿。

图3 管理信息库的结构Fig.3 Structure of management information base

图4 故障监控状态机Fig.4 Fault monitoring state machine

配置管理和故障管理紧密相关,两者的关系如图5所示。图中上面部分是传递节点,中间部分是数据库,下面部分是监控节点。传递节点中故障管理模块对信号进行监控,当各传递节点检测到有故障发生时,产生告警信息并存入数据库中。监控节点查询数据库中传递节点的状态,进而定位和判断故障类型,并做出相应处理决策,如将输入信号故障及时通知系统管理员,切换光纤至备用光纤解决光纤链路故障等。监控节点将需要修改的配置写入数据库的修改配置表中。传递节点的配置管理模块读取数据库中的修改配置表,当查询到有配置更新则修改相关配置。

通过当前配置表和修改配置表来协调监控节点和传递节点的配置更改过程,配置更改流程图如图6所示。传递节点查询数据库当前配置表。若当前配置表中的配置信息与实际配置不一致则先向当前配置表写入实际配置记录。之后查询修改配置表,若有配置需要更新则修改自身的配置,成功修改后向当前配置表写入修改后的配置记录。监控节点将需要修改的配置信息写入修改配置表后查询数据库中相应的当前配置表。若查询到当前配置已全部修改完成后,将修改成功的记录写入修改配置表。

图5 故障管理和配置管理的关系图Fig.5 Relationship between fault management and configuration management

图6 配置更改流程图Fig.6 Configuration change flowchart

实测的钟差和时间偏差(TDEV)能准确反映系统性能的指标,但实际应用的系统中传递节点不能得到实测的钟差。考虑到利用传递节点测试的时间间隔计算出的相对钟差( ΔT)也能大致反映实际钟差的趋势,本文采用 ΔT实时监控时间传递的性能。对BTDM-SFSW时间传递系统,ΔT由主站测得的时间间隔TAB、从站测得的时间间隔TBA、时间延迟量Td计算得到

系统通过对 ΔT设定一个阈值实现性能监控,当计算出的 ΔT超过阈值时,系统产生告警信号并将告警信息记录进数据库。合理的阈值设计是性能监控的关键。由于系统是一个反馈控制系统,发送给晶振的反馈值会随着 ΔT的变大而变大。但是光纤链路的抖动和数据接收误码的存在会导致计算出的 ΔT的突变,若用某一时刻突变的 ΔT计算出的反馈值输入给晶振,会导致系统性能的瞬间恶化。故当 ΔT超过阈值时,不需要将反馈值输入给晶振,使 ΔT在没有反馈的情况下随时间缓慢增长。若阈值过小,虽然能够很好的监控系统性能,但是增长的 ΔT容易超过阈值,造成反馈系统的停止运行;
若阈值过大又不能很好的监控系统性能。因此本文通过对 ΔT阈值的自适应的调整实现性能监控。当系统刚开始运行时,主从两端的时间还不同步,需要将阈值保持在较高的值保证反馈系统运行;
在系统趋于稳定后将阈值保持较低的值对 ΔT的大小实时监控,当遇到偶发的突变则适当调高阈值,保证链路重新正常后的 ΔT不超过阈值。

在基于BTDM-SFSW时间传递系统上实现和测试了光纤时间传递监控系统,图7是监控系统的测试图。主、从传递节点分别包含一个时间传递端机和一个监控上位机,上位机中运行监控软件客户端。监控节点为一个上位机,运行监控服务端和数据库。主、从端时间传递端机通过主、备两根光纤连接,监控节点和传递节点间通过局域网连接。

图7 光纤时间传递监控系统的测试图Fig.7 Test of optical time transmission monitoring system

图8是光纤故障时主备光纤切换前后时间间隔和钟差的变化曲线图。图8(a)中TAB是主站测得的时间间隔,TBA是从站测得的时间间隔。可以见到,主用光纤在第11 s时断开,其后的1 s内,主、从端测得的时间间隔都减少了约50 μs。这表明系统成功地由30 km的主用光纤切换到了20 km的备用光纤,保证了时间传递的持续进行。又在第21 s时将备用光纤断开,系统又成功切换回了主用光纤。图8(b)是计算出的相对钟差,可见相对钟差没有中断或突变,即没有受到主用光纤或备用光纤断开的影响。上述结果表明,故障管理能够有效处理光纤链路断开故障,在不影响传递性能的情况下保证系统的持续正常运行。

图8 变化曲线图Fig.8 Change curves

本文设计了时间传递监控系统的总体架构和管理信息库的结构,实现了故障管理、性能管理、配置管理、安全管理、数据存储的功能,在BTDM-SFSW时间传递系统上进行了验证。结果表明,系统能够实时的采集数据信息和状态信息,做出故障处理,并回放任意时刻的历史数据和历史告警信息,为大范围多节点时间传递时间系统的稳定可靠运行提供有效保障。本系统使用数据库作为传递节点和监控节点之间的桥梁,无需直接建立连接,易于后期多节点的拓展,同时减少了系统数据流量。在未来节点变多且不易管理时,可以考虑使用标准的网络管理协议实现对系统的监控,如SNMP协议。

猜你喜欢 阈值光纤节点 非平稳声信号下的小波变换去噪方法研究现代电子技术(2022年11期)2022-06-14分区域的树型多链的无线传感器网络路由算法现代电子技术(2022年4期)2022-02-21土石坝坝体失稳破坏降水阈值的确定方法建材发展导向(2021年19期)2021-12-06非均匀光照下文本图像分割算法研究科技研究(2021年15期)2021-09-10基于移动汇聚节点和分簇的改进节能路由算法卫星电视与宽带多媒体(2020年7期)2020-06-19基于点权的混合K-shell关键节点识别方法华东师范大学学报(自然科学版)(2019年3期)2019-06-24中国特种光纤产业正衔枚疾走通信产业报(2019年12期)2019-06-21长飞光纤:中国光通信A+H第一股通信产业报(2018年26期)2018-11-22光纤与光纤传感器中学物理·初中(2017年8期)2018-03-06利用迭代软阈值方法抑制恒时演化类核磁共振实验中的采样截断伪峰分析化学(2017年12期)2017-12-25

Tags: 监控系统   光纤   传递  

搜索
网站分类
标签列表